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Summary

Modern agriculture is facingmultiple challenges including the necessity for a substantial increase

in production to meet the needs of a burgeoning human population. Water shortage is a

deleterious consequence of both population growth and climate change and is one of the most

severe factors limiting global crop productivity.Brassica species, particularly canola varieties, are

cultivatedworldwide for edibleoil, animal feed, andbiodiesel, and suffer dramatic yield lossupon

drought stress. The recent release of the Brassica napus genome supplies essential genetic

information to facilitate identification of drought-related genes and provides new information

for agricultural improvement in this species. Here we summarize current knowledge regarding

drought responses of canola, including physiological and -omics effects of drought. We further

discuss knowledge gained through translational biology based on discoveries in the closely

related reference species Arabidopsis thaliana and through genetic strategies such as genome-

wide association studies and analysis of natural variation. Knowledge of drought tolerance/

resistance responses in canola together with research outcomes arising from new technologies

and methodologies will inform novel strategies for improvement of drought tolerance and yield

in this and other important crop species.
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I. Introduction

Fresh water scarcity is an emerging global problem, and given that
the majority of fresh water extracted by humans is used for
agriculture (Rosegrant et al., 2009), improving crop production
under limited water availability is an important challenge.
Although crop production can be enhanced by water conservation
through improvements in tillage and irrigation practices, modifi-
cation of the genetic basis of stress tolerance in crops is an urgently
needed complementary strategy for improving productivity under
conditions of moisture deficit (Turner, 2001; Pennisi, 2008). It is
estimated that crops attain less than half of their potential yield as a
result of unfavorable environmental conditions, with water deficit
being the most severe stress (Boyer, 1982; Gleick, 1998; Araus
et al., 2002). Given climate change scenarios, drought tolerance
will be an increasingly necessary agronomic characteristic.

There are over 3000 species within the Brassicaceae (mustard
family) and they are mainly cultivated in the northern hemisphere.
The Brassicaceae includes many familiar vegetable crops (e.g.
broccoli, cauliflower, Chinese cabbage, and variousmustards). Also
included in the Brassicaceae are the reference plant, Arabidopsis
thaliana, and the oilseed crops, particularly Brassica napus
(Al-Shehbaz, 1984). Brassica species provide c. 12% of the edible
oil worldwide, particularly from the canola varieties (Paterson et al.,
2001; Hall et al., 2002). Standing for Canada (Can) oil (ola), the
word ‘canola’ refers to types of rapeseed varieties originally
developed in Canada for edible oil, animal feed, and biodiesel,
with low glucosinolate and erucic acid content (http://www.
canolacouncil.org/). Canola quality oil is derived from three
species: B. napus, Brassica rapa, and Brassica juncea. Among the
canola species, B. napus, an amphidiploid species (AC genome,
n = 19), is derived from a recent (presumably < 10 000 yr ago)
hybridization of B. rapa (A genome, n = 10) and Brassica oleracea
(C genome, n = 9) (Palmer et al., 1983; Wan et al., 2009; Schmidt
& Bancroft, 2011; Wang et al., 2011a).

Brassica napus possesses favorable agronomic properties; for
example, cultivation under different seasons (annuals and bienni-
als) and rotation with cereals is possible. B. napus produces high-
quality oil (Ahmadi, 2010) and is currently the third largest source
of global vegetable oil supplies, after soybean and palm
(http://faostat3.fao.org). During the past decade, annual produc-
tion of B. napus increased from 37 million tons in 2003 to
73 million tons in 2014 (http://faostat3.fao.org).B. napus not only
provides vegetable oil with superior nutritional value, its primary
commercial use, but also meal for animal feed and a source of
biodiesel with excellent flow properties in cold weather as a result of
its low saturation.

This review summarizes current knowledge regarding drought
responses of canola, with the major focus on B. napus. This topic is
of interest from both basic and applied science viewpoints, because
for most crops drought is the major abiotic stress causing severe
reduction in productivity (Jensen et al., 1996b; Angadi et al., 2004;
Willenborg et al., 2004; Sinaki et al., 2007). In this article we first
review the physiological effects of drought on canola and then
describe current knowledge in three areas relevant to modern

strategies to improve drought tolerance: results from translational
strategies based on discoveries made in the close relative,
A. thaliana; large-scale datasets arising from direct -omics analyses
in canola itself; and information on canola from contemporary
genetic approaches such as genome-wide association studies
(GWAS) and analysis of natural variation (Fig. 1). Given the tools
and information available, particularly in conjunction with the
recent publication of aB. napus genome sequence (Chalhoub et al.,
2014), we contend that canola is poised to become a crop model
system in its own right.

II. Physiological complexity of responses to drought
stress in canola crops

Investigations of physiological responses to drought in B. napus
(Fig. 2) have been conducted under both field and growth chamber
conditions (Jensen et al., 1996a,b; Qaderi et al., 2006; Shafiq et al.,
2014). Well-known processes influenced by drought stress include
photosynthesis, stomatal conductance, transpiration, protein syn-
thesis, and metabolite accumulation, all of which directly or
indirectly affect seed yield and quality (Jensen et al., 1996a;
Hashem et al., 1998; Sangtarash et al., 2009).

Brassica napus is sensitive to water deficit during all stages of
growth, from germination to seed set. Owing to the fact that
abscisic acid (ABA) biosynthesis is induced by drought stress, ABA
application is often used as a proxy for a drought signal. In B. napus
seeds, exogenous application of ABA prevented entrance of the
embryo into the growth phase (Schopfer & Plachy, 1984). ABA-
mediated embryo dormancy was reported to result at least in part
from a reversible inhibition of changes in cell wall biophysical

Fig. 1 Discoveries inArabidopsis thaliana,Brassica -omics tools, and natural
variation inBrassica species provide complementary and synergistic research
approaches. When combined, these tools can identify the genetic basis for
stress response traits that may yield advances in efforts to improve canola
drought tolerance by transgenic and breeding strategies. QTL, quantitative
trait loci; GWAS, genome-wide association studies.
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properties, for example, cell wall extensibility coefficient and
minimum turgor required for cell expansion (Schopfer & Plachy,
1985). Prolonged germination time and dramatically decreased
germination rate in B. napus were also observed upon treatment
with polyethylene glycol (PEG) (Willenborg et al., 2004), which
simulates the osmotic stress component of drought. Drought stress
after seed germination also influences seedling growth: seedling
height, fresh weight, and survival rate were negatively affected by
PEG-simulated drought stress applied to 14 B. napus varieties after
seed germination (Yang et al., 2007). Therefore, drought stress
during seed germination and initial growth not only impacts seed
germination time and rate, but also has adverse effects on vegetative
growth, and can ultimately result in yield loss in B. napus
(Willenborg et al., 2004; Li et al., 2005; Yang et al., 2007).

At the vegetative stage, numerous biochemical changes have
been observed when B. napus is exposed to drought, including
effects on bothmacromolecules and small molecules (metabolites).
As in many other species, increased expression levels of late
embryogenesis abundant (LEA) proteins have been observed in
B. napus leaves under ABA, salt, cold, and osmotic stresses (Dalal
et al., 2009). Rapid accumulation of amino acids has been observed
in B. napus during drought stress until rewatering (Good &
Zaplachinski, 1994). Proline, which is involved in osmotic
regulation (Ma et al., 2003) and possibly in nitrogen-use efficiency
(Albert et al., 2012) under drought stress, accounts for themajority
of amino acid accumulation (Good & Zaplachinski, 1994; Ma

et al., 2003;Din et al., 2011). Previous studies revealed that proline
content was increased significantly by drought stress in theB. napus
varieties Okapi, RGS, Rainbow, and Dunkeld, suggesting pro-
duction of compatible solutes as a mechanism of drought stress
tolerance in this species, as is also commonplace in other species
(Omidi, 2010; Ullah et al., 2012). Besides proline, carbohydrate
dynamics are also regulated by drought stress. For example,
drought stress elevated concentrations of trehalose, glucose,
fructose, and sucrose and decreased raffinose in B. napus var. Titan
(M€uller et al., 2012).

Lipid peroxidation and antioxidant enzyme activities are also
affected by drought stress. PEG simulation of drought treatments
increased the content of malondialdehyde (MDA), a product of
lipid peroxidation, and enzyme activities of superoxide dismutase,
peroxidases, and catalase, in roots and shoots of several B. napus
cultivars (Abedi & Pakniyat, 2010; Chai et al., 2011; Wang et al.,
2011b; Mirzaee et al., 2013). Liu et al. (2011) found that
aminolevulinic acid (ALA) enhances the drought stress tolerance
of B. napus seedlings, quantified as shoot biomass and chlorophyll
(Chl) content, through enhancing the activities of specific antiox-
idant enzymes and inducing the expression of specific antioxidant
enzyme genes.

Drought stress also causes complex whole-plant physiological
and morphological responses. When water deficit occurs, the
phytohormone ABA is synthesized and transported to leaf tissue,
consequently activating guard cell responses that promote stomatal
closure and inhibit stomatal opening to preserve plant hydration.
Accumulation of ABA in leaves has been confirmed in drought-
stressed B. napus seedlings (Qaderi et al., 2006). Stomatal closure
induced by exogenous application of ABA has been reported in
isolated epidermal peels of B. napus (Zhu et al., 2010). Lower
stomatal conductance was observed in droughted B. napus plants
than in well-watered plants, leading to leaf temperatures 1–2°C
higher under drought (Hashem et al., 1998). Drought stress
decreases net CO2 assimilation, photosynthetic rate, Chl content,
and transpiration in most terrestrial plants, including B. napus
(Hashem et al., 1998; Din et al., 2011; Qaderi et al., 2012; Shafiq
et al., 2014). These responses are associated with the reduced
stomatal conductance upon drought stress, which facilitates water
conservation (Shaw et al., 2005).

Water deficit results in decreased root and shoot biomass
(Hashem et al., 1998; Qaderi et al., 2012; Ashraf et al., 2013;
Shafiq et al., 2014). Although the plants are smaller overall, water
deficit can increase the relative portion of the biomass allocated to
roots, a strategy that is considered to be adaptive. In B. napus, a
greater reduction in shoot mass is seen with drought at the
vegetative stage than at the flowering stage (Ashraf et al., 2013) and
shortened shoot height can be accompanied by increased root
length in drought-stressed plants (Qaderi et al., 2012; Ashraf et al.,
2013). Drought stress also reduces leaf number and area, leaf area
ratio (leaf area : plant dry weight (DW) (cm2 g�1)), and transpi-
ration, and increases water-use efficiency (WUE), and specific leaf
weight (leaf DW : leaf area (g m�2)) and leaf weight ratio (leaf
DW : plant DW) in B. napus seedlings (Hashem et al., 1998;
Qaderi et al., 2012). These growth parameters can be employed to
assess the severity of drought stress.

Fig. 2 Physiological andmorphological trait responses to water deficit stress
in canola crops discussed in this review, organized by organ type. LEA, late
embryogenesis abundant; WUE, water-use efficiency.
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Flowering is a critical stage influencing the yield of B. napus.
Effects arising from drought stress imposed during vegetative
growth, such as reduced net photosynthesis and stomatal conduc-
tance resulting in increased leaf temperature, were also observed in
B. napus undergoing drought stress at flowering. Drought stress
treatments imposed at flowering reduced seed weight, total seed
yield, seed number per pod, and pod number per plant, and
resulted in higher yield loss than drought stress applied at the
vegetative stage (Champolivier & Merrien, 1996; Hashem et al.,
1998; Din et al., 2011).

Yield in oilseed crops is positively correlated with total water
availability (Nuttall et al., 1992). It has been reported that after the
first 6–8 inches (152–203 mm) of water, canola grain yield can
increase by 150–280 kg ha�1 per each additional inch of water
(Nielsen, 1997; Si&Walton, 2004). In Europe, for example, yields
of winter canola are double those of spring varieties, and this is
attributed in part to the fact that winter canola experiencesminimal
water deficit stress (Wan et al., 2009). Drought stress imposed at
the reproductive stage has a more severe impact on yield than
drought stress imposed during vegetative growth, as a result of
reduced pod number, seed number, and seed weight (Sinaki et al.,
2007; Ahmadi & Bahrani, 2009). In one experiment, plants
undergoing drought stress during reproduction had c. 20–40%
reduction in seed yield compared with nonstressed plants (Ahmadi
& Bahrani, 2009).

A key agronomic issue for oilseed crops such as canola is not only
the effect of drought on yield but the effect of drought on seed
quality. Several studies have investigated changes in the biochem-
ical composition of canola seeds produced under drought condi-
tions. Drought stress at any developmental stage decreases seed oil
content (Bouchereau et al., 1996; Champolivier &Merrien, 1996)
and alters seed oil composition (Enjalbert et al., 2013). In
particular, a decrease in fatty acids such as linolenic acid was
observed in B. juncea under limited water availability (rainfed)
conditions (Enjalbert et al., 2013). An increase in total glucosino-
late concentration was observed in B. napus seeds from plants
undergoing drought stress during vegetative and flowering stages;
however, application of water stress after flowering caused little to
no change in the total glucosinolate concentration of seeds
(Bouchereau et al., 1996; Champolivier & Merrien, 1996; Jensen
et al., 1996b).Water shortages during either vegetative or flowering
stages resulted in significant increases in seed protein concentration
(Bouchereau et al., 1996; Champolivier & Merrien, 1996; Jensen
et al., 1996b) and inhibited accumulation of phenolic compounds
in seeds (Bouchereau et al., 1996). Therefore, water shortage at any
stage has potential effects on seed quality and yield in B. napus.

III. Translational biology: iterating between
A. thaliana and B. napus

1. Brassica genomics and ABA signaling

While a high-density genetic linkagemap ofB. napuswas generated
in 2011 (Wang et al., 2011a), the first complete B. napus genome,
that of the B. napus European winter cv ‘Darmor-bzh’, was not
reported until 2014. RNA-Seq and expressed sequence tag (EST)

data in combination with ab initio gene prediction from the
genome sequence led to the identification of c. 101 000 gene
models, with over 90% confirmed by matching to the B. rapa and/
or B. oleracea predicted proteomes (Chalhoub et al., 2014). Almost
half (48%) of the genes were estimated to undergo alternative
splicing, mainly from intron retention. Of the assembled genome,
34.8% is composed of transposons, with their positions largely
corresponding to those in the progenitor B. rapa and B. oleracea
genomes.

This early Darmor-bzh genome both provides an invaluable
resource to B. napus researchers and illustrates some of the
problems inherent in the assembly of allopolyploid genomes.
The polyploid complexity and repeat elements made it difficult to
assemble the complete genome. Misassembly can result in specific
problems for the downstream design and interpretation of
experiments seeking to use the assembled genome to answer
specific biological questions. For example, incorrect ordering of
genes will introduce errors when inferring the genes involved in a
process from an experiment in which quantitative trait loci (QTLs)
are identified using linkage disequlibrium between genetic mark-
ers. In the future, longer sequencing read lengths will enable reads
spanningmore repeat regions (Clarke et al., 2009; Eid et al., 2009),
leading to more complete and higher quality genomes.

In contrast to the nascent stage of the B. napus genome assembly
and annotation, the reference plant A. thaliana provides a fully
sequenced and extensively annotated genome. A. thaliana has been
used extensively for basic discovery research in plant sciences,
especially for gene function characterization. A. thaliana is a
genetically, evolutionarily, and physiologically close relative of
B. napus (Noh & Amasino, 1999; Byzova et al., 2004; Rana et al.,
2004; Parkin et al., 2005). The ancestral lineages diverged c. 16–
19 million yr ago.The two species can be crossed and thenucleotide
sequence conservation is in the range of 80–90% in exons and 70%
in introns (Dixelius & Forsberg, 1999; the Arabidopsis Genome
Initiative, 2000; Love et al., 2005). Therefore, knowledge gained
from the model plant species A. thaliana provides valuable
guidance to better understand the drought responses of its close
relative B. napus (Zhang et al., 2004) and to apply translational
biology approaches for development of transgenic B. napus with
improved drought tolerance. Results from such experiments
demonstrate that canola product development based on informa-
tion transfer between A. thaliana and B. napus has agronomic
relevance.

Abscisic acid biosynthesis can be triggered by drought stress and
accumulated ABA is transported from roots to shoots and then
stomata through xylem sap. Research using the model plant
A. thaliana has provided critical insights into the core ABA
signaling pathway. ‘PYR/PYL/RCAR’ family ABA receptors have
been identified (Ma et al., 2009; Park et al., 2009). These receptors
interact with type 2C protein phosphatases (PP2Cs), and conse-
quently inhibit PP2Cs’ function of blocking activity of down-
stream sucrose nonfermenting (SNF)-related kinase 2 (SnRK2)
proteins, particularly OST1 (Li et al., 2000; Mustilli et al., 2002).
After activation, OST1 phophorylation of NADPH oxidase, K+

and anion channels, and transcription factors are central processes
in ABA signal transduction (Geiger et al., 2009; Sato et al., 2009;
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Sirichandra et al., 2009, 2010). The PYR/PYL/RCAR receptors,
PP2Cs, and SnRK2 form a key complex referred to as an ‘ABA
signalosome’. Other important components in ABA signal trans-
duction that have been extensively studied in guard cells include
reactive oxygen species (ROS) and nitric oxide production,
phosphatidic acid signaling, heterotrimeric G protein-coupled
signaling, and cytosolic Ca2+ ([Ca2+]cyt) and pH increases (for
reviews on these topics, see Hubbard et al., 2010 and Umezawa
et al., 2010).

Because the B. napus genome project used syntenic analysis to
map B. napus genes to the B. rapa and B. oleracea progenitors and
back to A. thaliana (Chalhoub et al., 2014), we were able to
investigate known ABA signaling pathway genes in B. napus. Using
theABA signaling pathway inA. thaliana as definedbyHauser et al.
(Hauser et al., 2011), we succeeded in finding corresponding
orthologs of each A. thaliana ABA signaling pathway gene in
B. napus. The distribution of the number of B. napus orthologs per
A. thaliana gene indicates that the ABA pathway in B. napus
typically retains genes from both the B. rapa and B. oleracea
progenitors. As shown in Fig. 3, most Arabidopsis ABA signaling
genes are represented in theB. napus genome as one copy from each
of the two progenitors, although for a few of these ABA signaling
genes B. napus has two or three copies from each of the ancestral
genomes. There does not seem to be strong evidence for selective
deletion of copies of a particular gene from one ancestor as a result
of the presence of one or more copies from the other ancestor.

The lack of selective gene deletion from one or the other
progenitor genomes in the ABA signalosome of Fig. 3 is perhaps
expected given the recent speciation event for B. napus, compared
with the estimated timescale for loss or mutation of gene copies
(Lynch & Conery, 2000; Moore & Purugganan, 2005). Previous
work in other species (Adams et al., 2003; Chen, 2007) has found

evidence of rapid epigenetic changes, expression level differentia-
tion, and gene silencing in polyploid plant genomes, as opposed to
gene deletion. Future transcriptomic and epigenetic studies on
B. napus should shed more light on differentiated gene expression
profiles and potential silencing of genes from the A andC genomes,
potentially revealing crosstalk between the B. rapa and B. oleracea
drought response mechanisms present in B. napus. Understanding
the extent of this differentiation may also suggest where polyploidy
provides the potential for new and intermediate phenotypes via
dosage regulation of the multiple copies present for most genes.

The above genomic analysis implicates the existence of a
conserved ‘ABA signalosome’ in Brassica. This conclusion is also
supported by earlier studies in which specific genes were studied.
Transcription factors are important downstream targets of the ABA
signaling pathway. Water stress and external ABA application up-
regulate the expression of the BolABI5 transcription factor in
B. oleracea (Zhou et al., 2013). BolABI5 is phosphorylated by
BolOST1, an ortholog of AtOST1 in B. oleracea (Wang et al.,
2013). BolABI1, a B. oleracea ortholog of the Arabidopsis PP2C-
type phosphatase, ABI1, interactswith the protein kinase BolOST1
(Wang et al., 2013; Yuan et al., 2013) and dephosphorylates the
transcription factor BolABI5 (Yuan et al., 2013). Other transcrip-
tion factors have also been found to participate in ABA responses in
Brassica species. For example, in Arabidopsis, AtMYC2 acts as a
transcription factor involved in ABA signaling (Abe et al., 1997)
and the B. napus ortholog, BnMYC2, shows increased accumula-
tion in response to drought in drought-tolerant canola lines
(Aliakbari & Razi, 2013). Ying et al. (2014) identified a NAC
domain transcription factor (BnNAC485) from cotyledons and
young seedlings that was induced by abiotic stress and ABA
treatment. B. napus plants overexpressing BnNAC485 also showed
hypersensitivity to exogenous ABA application (Ying et al., 2014),
including enhanced stomatal closing and up-regulation of ABA-
responsive genes. These phenotypes were comparable to those
observed in rice overexpressing the NAC transcription factor
OsSNAC1 (Hu et al., 2006). Saha et al. (2015) recently reported
that eight MADS-box transcription factors, with known function
in floral organ development, were up-regulated by drought
treatment in B. rapa seedlings (Saha et al., 2015).

Signaling elements in the ABA pathway upstream of gene
regulation have been particularly well studied in guard cells. Ca2+

elevations are a central process in guard cell ABA signaling
(Hetherington et al., 1986; Li et al., 2006). In plants, calcineurin B-
like (CBL) proteins serve as one type of calcium sensor. One family
member inA. thaliana, CBL1, positively regulates salt and drought
responses but negatively regulates cold responses (Cheong et al.,
2007). A variety of stresses, including salt, cold and drought, as well
as ABA treatment induce the expression of another CBL family
memberCBL9 in youngA. thaliana seedlings (Pandey et al., 2004).
In B. napus, a CBL-interacting protein kinase (CIPK), BnCIPK6,
was isolated; salt and osmotic stresses, phosphorus starvation, and
ABA significantly induced the expression of both BnCBL1 and
BnCIPK6 (Chen et al., 2012). The Arabidopsis heterotrimeric G
protein a subunit, GPA1, also has pivotal roles in multiple
signaling events, including ABA-modulated stomatal movement
(Wang et al., 2001). The B. napus G protein a subunit (BnGA1)

Fig. 3 Orthologs ofArabidopsis thaliana abscisic acid (ABA) signaling genes
appear in multiple copies in the Brassica napus genome as a result of
retention of both the Brassica rapa and Brassica oleracea progenitor
genomes.A. thalianaABAsignalinggeneswere summarizedbyHauseret al.
(2011) based on the literature. The size of each circle denotes the number of
Arabidopsis genes with the corresponding number of orthologs in B. napus,
with one ortholog from each progenitor the most common, but two and
three orthologs also observed.
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gene was found to be strongly inducible by high concentrations of
ABA and brassinosteroid (BR). BnGA1 was also up-regulated by
salt anddrought stress but down-regulated byheat and cold stresses,
indicating that G protein signaling in B. napus, as in Arabidopsis,
plays important roles in both hormone signaling and environmen-
tal stress responses (Gao et al., 2010). Studies such as these provide
important evidence for the ‘translatability’ of knowledge obtained
in a model species such as A. thaliana to its agronomically
important relatives. The studies described in the next section show
several successful examples of applications of such knowledge to
Brassica crops.

2. Transgenic manipulations in B. napus based on knowl-
edge derived from A. thaliana

Orthologs of genes identified in drought responses in Arabidopsis
are targets for improving physiological responses to drought in
Brassica (Zhang et al., 2004). Transgenic manipulation of such
genes is the most direct avenue for precise engineering of crops
using discoveries from Arabidopsis (Table 1). In Arabidopsis, the
b-subunit of farnesyltransferase, ERA1, has been shown to regulate
ABA sensitivity and drought tolerance. Arabidopsis plants with
inhibited ERA1 activity by either gene deletion or chemical
inhibitor application were hypersensitive to ABA-induced anion-
channel activation in guard cells and stomatal closure (Pei et al.,
1998). In addition, transpirational water loss is reduced in era1
mutants upon drought treatment (Cutler et al., 1996; Pei et al.,
1998).Wang et al. (2005) evaluated transgenic B. napus expressing
an antisenseERA1 construct driven by a drought-inducibleRD29A
promoter. Reduced germination rate and inhibited seedling
development following exogenous ABA application were observed
in the transgenic B. napus compared with nontransgenic plants.
However, the transgenic plants also showed reduced stomatal
conductance and enhanced ABA sensitivity under water deficit,
resulting in increased seed yield under drought conditions in the
field as compared with the nontransgenic wild-type plants, with no
yield penalty, that is, no loss of yield under well-watered conditions
(Wang et al., 2005). Similarly, RNAi knockdown of the farnesyl-
transferase (FTA) a-subunit in B. napus under the shoot-specific
promoter AtHPR1 resulted in higher seed yield under drought
conditions in the field than in the nontransgenic wild-type plants
(Wang et al., 2009). Similarly, transgenic B. napus lines with
constitutive expression of Arabidopsis C-repeat/dehydration-
responsive element binding factor (CBF1) showed enhanced
drought and freezing tolerance (Jaglo et al., 2001; Zhang et al.,
2004).

Several key enzymes in phospholipid metabolism are important
components of ABA signaling pathways. For example, phospha-
tidic acid, a lipid-derived messenger produced by phospholipase
Da1 (PLDa1), promotes stomatal closure in A. thaliana (Jacob
et al., 1999; Zhang et al., 2009). Reducedwater loss and an increase
in biomass accumulation and yield under stress conditions such as
drought and salinity were observed in transgenic B. napus plants
with expression of Arabidopsis PLDa1 driven by a guard cell-
specific promoter (Lu et al., 2013). Another key enzyme, phos-
phatidylinositol-specific phospholipase C (PtdIns-PLC2), has

demonstrated involvement in ABA signal transduction in
Arabidopsis (Stax�en et al., 1999; Hunt et al., 2003). Transgenic
B. napus lines with constitutive overexpression of BnPtdIns-PLC2
driven by the constitutive CaMV35S promoter exhibited early
flowering and shortermaturation periods, accompanied by reduced
transpirational rate and partially closed stomata, and enhanced
drought tolerance (Georges et al., 2009).

Poly (ADP-ribose) polymerase (PARP) participates in a number
of cellular processes, including programmed cell death. Transgenic
B. napuswith reducedPARPactivity showed reduced cell death and
improved tolerance to various abiotic stresses, such as high light,
drought, and high temperature (de Block et al., 2005). Glycine-
betaine (betaine) affords osmoprotection and protects organelles
against stress conditions in vitro. Choline supplementation to
transgenic B. napus with constitutive expression of a bacterial
choline oxidase gene resulted in enhanced betaine accumulation.
Moderate drought tolerance, assessed by measurements of relative
shoot growth and net photosynthetic rate, was observed in choline-
supplemented transgenic B. napus (Huang et al., 2000).

These studies together suggest that initial elucidation of
individual genes’ roles in response to drought stress in a model
plant species can provide fundamental knowledge to improve
drought resistance in canola crops (Wan et al., 2009). Commercial
crop varieties arising from such Arabidopsis-based strategies would
provide the definitive confirmation of their usefulness. As described
in the next section, there are also a few examples wherein
information on drought signaling and response first obtained in
B. napus has been applied to improve drought tolerance of other
species.

3. Transgenic manipulations in A. thaliana and other plant
species based on knowledge derived from canola crops

Drought tolerance phenotypes observed in other plant species upon
transgenic expression of Brassica genes also provide insight
regarding the drought resistance function of those genes (Table 1).
For example, transgenic Arabidopsis plants with overexpression of
an active (phosphomimic) form of B. napus CBL-interacting
protein kinase (BnCIPK6) showed enhanced tolerance of high-
salinity and low-phosphate conditions (Chen et al., 2012). These
observations suggest that BnCIPK6 plays a role in responses to high
salinity and phosphorus deficiency; the observation of ABA
insensitivity of the Arabidopsis cipk6 mutant also suggests a role
in ABA and drought signaling (Chen et al., 2012). Transgenic
Arabidopsis plants overexpressing B. napus LEA gene BnLEA4-1
under control of a constitutive CaMV35S or stress-inducible
RD29A promoter both exhibited better recovery after 15 d of
drought stress as compared with wild-type plants (Dalal et al.,
2009). Transgenic B. campestris overexpressing the B. napus group
3 LEA gene BnLEA driven by the CaMV35S promoter also
exhibited enhanced drought tolerance, based on the survival rate
after 2 wk of water deprivation, as well as improved salt tolerance as
assessed from seed germination and growth performance (Park
et al., 2005). An ethylene-responsive factor (ERF) gene from
B. rapa, BrERF4, was found to be induced by treatment with
ethylene or methyl jasmonate, but not responsive to ABA or salt
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treatment in B. rapa. Nevertheless, overexpression of BrERF4 in
Arabidopsis led to delayed yellowing under salt stress as compared
with the wild-type, and greater shoot weight and a higher survival
rate under drought stress (Seo et al., 2010). Additionally,
A. thaliana plants with constitutive overexpression of BnLAS, a
B. napus ortholog of the A. thaliana transcriptional regulator
LATERAL SUPPRESSOR (LAS), showed reduced water loss rates
and enhanced drought tolerance as well as better recovery after
dehydration (Yang et al., 2011).

Transgenic expression of canola genes in non-Brassicaceous
species can also improve drought tolerance. Transgenic tobacco
constitutively overexpressing the B. napus plasma membrane
aquaporin BnPIP1 exhibited reduced wilting after 10 d of water
deprivation (Yu et al., 2005). A gene encoding a phosphoinositide
phosphatase from B. rapa, BrSAC1, was observed to be induced by
different stress conditions, for example, cold, desiccation, salt,
submergence, ABA, and heavy metals. Overexpression of BrSAC1
in tobacco increased germination rate, seedling biomass, and
seedling height under cold, dehydration, and salt stresses (Han
et al., 2013). All these results indicate the potential of genetic
engineering at the transcriptional level for improvement of drought
tolerance in crop species.

Direct modification by introduction of a protein-coding
transgene (as mainly discussed earlier) is not the only strategy for
genetic engineering of crops. Manipulation of gene expression
towards desirable traits can also be achieved through small RNA-
mediated gene silencing and epigenetic modulation, for example,
DNA methylation and histone modifications. Plant microRNAs
participate in a wide variety of developmental and stress (both
biotic and abiotic) responses. Repression of gene expression using
microRNAs has a great potential in crop improvement (please refer
to Sunkar et al., 2012 and Kamthan et al., 2015 for reviews on this
topic). Small RNAs, especially microRNAs, have been identified in
canola crops through sequence-based predictions and deep
sequencing (Buhtz et al., 2008; Zhao et al., 2012; Shen et al.,
2015). Some of the known canola microRNAs are development-
related and stress-responsive (Pant et al., 2009; K€orbes et al., 2012;
Zhou et al., 2012; Huang et al., 2013; Shamloo-Dashtpagerdi
et al., 2015). However, at present there are relatively few canola
microRNAs in the registry database (http://www.mirbase.org).
B. napus, for example, has 90 precursors and 92 mature
microRNAs, compared with Arabidopsis (325 precursors and
427 mature) or other crops (e.g. rice with 592 precursors and 713
mature). This suggests that themicroRNAprofile of canola crops is
far from fully investigated. MicroRNAs particularly responsive to
drought stress have been studied in several species, including rice
(Jeong & Green, 2013), Arabidopsis (Liu et al., 2008), and
Medicago truncatula (Wang et al., 2011d). The only study in canola
to date identified five drought-induced microRNAs and one
drought-repressed microRNA, with six transcription factors and a
kinase as predicted targets (Shamloo-Dashtpagerdi et al., 2015).
These predicted targets are involved in ABA biosynthesis, BR and
auxin signaling, and transcription (Shamloo-Dashtpagerdi et al.,
2015). Results from this study, together with conserved drought-
responsive microRNAs discovered in other species, form an initial
inventory of microRNA candidates that could potentially be

manipulated to improve drought tolerance in canola. However,
issues within currentmicroRNA screening include lack of functional
validation, and lack of spatial and temporal monitoring of the
microRNA-induced change (Sunkar et al., 2012). Therefore, inves-
tigations on tissue-specific (or even single cell type-specific) drought-
responsive microRNAs along a time-course of drought treatment,
together with information on expression levels of the corresponding
target genes, are essential data for the goal of improved drought
tolerance in canola via microRNA-based strategies.

Epigenetic features, for eample, DNA methylation and histone
modifications, are associated with developmental transitions,
responses to abiotic and biotic stresses, as well as numerous
quantitative and qualitative traits in crops (e.g. biomass and yield;
Hauben et al., 2009; Verkest et al., 2015). Although there is limited
knowledge on the epigenome of canola as related to desirable
agronomic traits (Lukens et al., 2006; Gaeta et al., 2007), a
pioneering study showed that energy-use efficiency (EUE) is
epigenetically controlled in B. napus (Hauben et al., 2009; Verkest
et al., 2015). EUE was defined as the ratio of total NAD(P)H
(representing the energy content) vs respiration rate (Hauben et al.,
2009). In general, lines with higher EUE showed global
hypomethylation in genomic DNA, as well as distinct histone
methylation and acetylation patterns, and these were associated
with 5% yield increase (Hauben et al., 2009). Furthermore,
epilines (lines selected from isogenic lines, i.e. lines and varieties
with identical genetic backgrounds, for traits that are epigenetically
controlled) selected towards drought tolerance were generated by
exposure of hypocotyl explants to 5% PEG (drought stress), and
selection for low respiration was repeated over three generations.
EUE was determined in the progeny of the last generation and the
two epilines with highest EUE showed enhanced drought
tolerance, and changes in both the transcriptome and the
epigenome, particularly enrichment for regions with histone 3
lysine-4 trimethylation (H3K4me3) (Verkest et al., 2015). These
applications suggest significant potential for incorporating epige-
netic variation into crop breeding for enhanced stress tolerance.

IV. Systems biology of Brassica under drought stress

Diverse physiological processes and gene categories indicate the
complexity of drought responses in B. napus, as is also true in other
species. Systems biology provides a robust tool for comprehensive
understanding of drought phenotypes at different levels of
biological organization. Given the rapid expansion of genomic
databases and the development of -omics tools that can be applied
to nonmodel species, -omics-based research on plant stress
tolerance can increasingly be performed directly in the species of
interest. Different fields of systems biology, for example, tran-
scriptomics, proteomics, and metabolomics, allow simultaneous
measurements of thousands of biological molecules, which gener-
ate massive datasets toward construction of a comprehensive
systems picture (Hsiao & Kuo, 2006; Le Nov�ere, 2007). Large-
scale approaches have been successfully employed to understand
the drought stress responses of Brassica species, and such
transcriptomic, proteomic, and metabolomic analyses are summa-
rized here (see Table 2 for summary).
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1. Transcriptomics

Before the availability of the genome of B. napus (Chalhoub et al.,
2014), genomes of other fully sequenced Brassicaceae species
provided key genomic references for studies in B. napus. The
complete genome sequence of one ancestor, B. rapa (var. Chiifu-
401), obtained using next-generation sequencing technologies and
de novo assembly of sequence scaffolds, was made available in 2011
(The Brassica rapa Genome Sequencing Project Consortium,
2011). The genome of the other ancestor, B. oleracea, was released
in early 2014 (Liu et al., 2014; sequences available at http://
brassicadb.org/brad/). Additionally, the nucleotide sequence con-
servation between A. thaliana and B. napus allows some genomic

platforms developed forA. thaliana also to be utilized in research on
B. napus.

The availability of the B. rapa genomemade microarray analysis
on this species possible. A B. rapa oligo microarray, KBGP-24K,
was constructed using sequence information from c. 24 000
unigenes (about half of the protein-coding genome). This array was
used to analyze gene expression changes after 3-wk-old B. rapa
plants were removed from soil and allowed to air dry in a growth
chamber (Lee et al., 2008). Around 3% of the genes on the
microarray (738) were identified as responsive genes that were
differently expressed fivefold or more at least once during the 48 h
time-course of drought treatment (Lee et al., 2008). This work
established a useful tool to analyze Brassica transcripts and

Table 2 A summary of -omics studies on canola crops under water-deficient conditions

Study Species/tissue Experimental condition Platform Responsive biological processes

Transcriptomics
Li et al. (2005) Brassica napus/seed PEG- or ABA analog

PBI429- inhibited
germination

Microarray Late seed development, carbohydrate metabolism,
cell wall loosening, ROS scavenging, lipolysis

Fei et al. (2007) B. napus/seed Natural desiccation
during seed ripening stage

Microarray Signal transductions, protein synthesis

Lee et al. (2008) B. rapa/whole plant Drought (air-dried) Oligo
microarray

Transcription factors

Niu et al. (2009) B. napus/seed Natural desiccation
during seed ripening stage

cDNA chip Fatty acid biosynthesis, auxin and jasmonate
signaling

Chen et al. (2010) B. napus/seedling root Drought (mannitol simulation) Macroarray Metabolism, transcription, signal transduction,
hormone and abiotic stress responses, growth
and development

Bhardwaj et al. (2015) B. juncea/seedling Drought (mannitol simulation) RNA-Seq *Stress/defense responses, metabolism,
phosphorylation, signal transduction,
transcription and translation, cell growth,
cell structure, membrane transport,
circadian rhythm, catalytic activity

Shamloo-Dashtpagerdi
et al. (2015)

B. napus/leaf Drought (mannitol simulation) Expressed
sequence
tag

Transcription factors, kinases, phosphatase,
microRNAs

Proteomics
Zhu et al. (2010) B. napus/guard cells ABA iTRAQ Photosynthesis, stress/defense responses,

metabolism, protein synthesis, energy production,
protein folding/transport and degradation,
membrane transport

Mohammadi et al. (2012) B. napus/root Drought (irrigation control) 2D-PAGE Metabolism, energy, disease/defense, transport
Meyer et al. (2012) B. napus/seed Natural desiccation during

seed-ripening stage
Phosphosites
mapping

Phosphorylation

Zhu et al. (2014) B. napus/guard cells ABA ICAT and
saturation
DIGE

Thiol-based redox modification

Luo et al. (2015a) B. napus/leaf Short-term drought
(drying on filter paper)

iTRAQ *Ion transport, vesicle trafficking,
signal perception/transduction,
transcription/translation, metabolism,
photosynthesis

Koh et al. (2015) B. napus/leaf Long-term drought
(stop watering)

iTRAQ Energy production, photosynthesis,
protein synthesis, stress/defense response,
metabolism, signaling, protein folding
and degradation

2D-PAGE, two-dimensional polyacrylamide gel electrophoresis; ABA, abscisic acid; DIGE, two-dimensional difference gel electrophoresis; ICAT, isotope coded
affinity tag; iTRAQ, isobaric tags for relative and absolute quantitation; PEG, polyethylene glycol; ROS, reactive oxygen species. *, indicates that drought-
responsive biological processeswere identified by statistically significant enrichment-based on gene ontology (GO) analysis (e.g. agriGO) in the study. In other
studies, biological processes were identified by representation of drought-responsive proteins/genes involved in those processes.
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highlighted a role of transcription factors during drought stress.
Another study, on a B. rapa DH line, T12-19, used tag sequencing
with a Solexa Illumina array and analyzed leaf samples under
dehydration treatment for 0, 1, 2 and 3 d (Yu et al., 2012). In total,
1092 genes were found to be significantly altered in response to
water deficit. Among these, 37 were transcription factors, 28 were
genes involved in signal transduction, and 61 were water- and
osmosensing-responsive genes. The results suggested high com-
plexity of changes at the transcriptional level under drought stress
(Yu et al., 2012). Taken together, such information from one of the
B. napus ancestors provides a crucial reference toward understand-
ing drought tolerance in B. napus.

The attempt to identify genome-wide drought-responsive genes
in B. napus itself began a decade ago. Using macroarray analysis, a
less expensive and less comprehensive microarray variant, a survey
of genes induced by drought stresses was performed in B. napus
(Chen et al., 2010). In total, 288 clones were identified as putative
drought-inducible genes, while 189 were candidates for drought-
suppressed genes. These drought-responsive genes belonged to
gene families participating in metabolism, transcription, signal
transduction, hormone (ABA, in particular) and abiotic stress
responses, as well as other processes related to growth and
development (Chen et al., 2010). This work, although limited
owing to themethods available at the time, provided an initial gene
list toward understanding drought response in B. napus at the
transcriptional level. A recent, commercially available B. napus
300K microarray designed from 80 696 unigenes clustered from
543 448 ESTs and 780 cDNA provides an opportunity to
substantially enhance our knowledge of stress responses in this
important economic crop (Roh et al., 2012), but has not yet been
used in analyses of B. napus transcriptomic responses to drought.

As mentioned earlier, sequence similarity between B. napus and
A. thaliana has allowed the use ofArabidopsismicroarrays to profile
gene expression inBrassica, with the caveat that paralogs may cross-
hybridize and confound relative expression analyses. For example,
Arabidopsis AR12K cDNA microarrays have been used to profile
B. napus seed transcriptomes. In a comparison of transcriptional
responses of imbibed vs germination-inhibited seeds of B. napus,
40 genes, mainly associated with late seed development, were up-
regulated in desiccated nongerminating seeds as compared with
imbibed seeds (Li et al., 2005). On the other hand, 36 genes were
down-regulated; these transcripts encoded proteins involved in
carbohydrate metabolism, cell wall-loosening processes, ROS
scavenging, and lipolysis (Li et al., 2005). Specifically, the
transcription factor ABA INSENSITIVE 5 was consistently up-
regulated in desiccated seeds and the gibberellic acid (GA)-induced
transcription factor PICKLE was down-regulated. These results
implicated ABA and GA signaling in the regulation of seed
desiccation (Li et al., 2005), and application of GA3 (300 mg l�1)
was found to enhance both seed germination and seedling tolerance
to drought stress in B. napus (Li et al., 2010). Another study using
the Arabidopsis AR12K cDNA microarrays discovered differen-
tially expressed genes across the full-size embryo, desiccation, and
mature stages of seed development in two B. napus cultivars (AC
Excel and DH12075). Genes associated with signal transductions
and protein synthesis were responsive during the desiccation stage

(Fei et al., 2007). In another study, a cDNA chip was generated
with over 8000 EST clones from B. napus embryos at different
stages of seed development (Niu et al., 2009). Using this chip, fatty
acid biosynthesis genes were found to be highly expressed in
B. napus seeds primarily at 21 d after flowering, when seed
desiccation starts. Additionally, several auxin- and jasmonate-
related genes showed patterns similar to those of the fatty acid
synthesis genes. Analysis of A. thaliana auxin and jasmonate
signaling mutants revealed changes in the fatty acid components of
mature seeds, indicating a link between hormone signaling, fatty
acid metabolism, and desiccation (Niu et al., 2009). Although
desiccation is a normal component of seed development, desicca-
tion tolerance of seeds and drought tolerance of whole plants may
share some common mechanisms, because both types of stresses
cause cellular dehydration (Nedeva & Nikolova, 1997).

RNA-Seq, another widely used method for genome-wide
quantification of gene expression, has also been applied to identify
drought-responsive genes in canola. A recent study investigated
drought-responsive genes in B. juncea seedlings and observed that
132 transcription factors (40 induced and 92 repressed) and 452
kinases (42 induced and 410 repressed) were regulated by drought
(Bhardwaj et al., 2015). A similar observation was reported in an
analysis of ESTs of B. napus under drought treatment (Shamloo-
Dashtpagerdi et al., 2015). This study found that 17 transcription
factors, eight protein kinases, and one protein phosphatase were
drought-regulated, including homologs of Arabidopsis protein
phosphatase 2C ABI1 and the ABA biosynthesis gene ABA1.

Although discovery of drought/desiccation-responsive genes at
whole-plant and whole-organ levels provides an overall picture,
studies on single cell types can provide insights into unique or cell-
specific functions. In A. thaliana, several guard cell transcriptomic
studies have been carried out. An early microarray study covering
around one-third of the genome discovered 69 ABA-inducible
genes and 64 ABA-repressed genes specifically in Arabidopsis guard
cell protoplasts. Transcripts related to drought tolerance and
potassium channels were among these ABA-responsive genes
(Leonhardt et al., 2004). Later, studies analyzing global transcrip-
tomic responses showed a large number of ABA-regulated genes
(Yang et al., 2008; Wang et al., 2011c; Bauer et al., 2013) . An
analysis was conducted using enriched preparations of Arabidopsis
guard cells and revealed 696ABA-induced and 477 repressed genes
in this cell type (Wang et al., 2011c). This study also uncovered c.
300 genes showing ABA regulation unique to guard cells.
Collectively, these transcriptomics studies facilitate understanding
of the molecular mechanisms of Brassicaceous species in response to
drought stresses.

2. Proteomics

While transcriptome analyses constitute a facile approach for
candidate gene identification, transcript abundance only indicates a
putative functionality of the encoded protein and often does not
reflect changes in protein abundance (Boggess et al., 2013). As the
final direct macromolecular product of global gene expression,
analysis of the proteome is required for a thorough understanding
of the cellular processes associated with drought. Early proteomic
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analyses were limited both by the wet bench technologies available
and by incomplete databases. Proteomics has since developed into a
sophisticated research approach (Chen & Harmon, 2006). In
general, comparative proteomics approaches include gel-based
methods, for example, two-dimensional (2D) difference gel
electrophoresis and more recent gel-free methods, for example,
isobaric tags for relative and absolute quantitation (iTRAQ).
Isotope multiplex labeling strategies such as iTRAQ have become
popular because they overcome the limitations of gel-based
proteomics methods, for example, poor resolution of membrane
proteins and of very acidic or basic proteins (Chen & Harmon,
2006). Gel-based and gel-free proteomics methods complement
each other and their combined use can enhance proteome coverage
and identify proteins with abundance changes.

Drought-induced changes in protein patterns of B. napus var.
oleifera roots were observed more than two decades ago, which
might represent the earliest proteomics analysis of drought-stressed
B. napus tissue. In the tap roots, 13 2D protein spots with low
molecular weight were induced by drought. Twelve of these spots
were also present in the short tuberized roots, a specific drought-
induced root type. After 3 d of rehydration, the disappearance of
these spots suggested their potential roles in drought tolerance
(Vartanian et al., 1987). However, the identities of these spots
remained unknown. In amore recent study, 2D polyacrylamide gel
electrophoresis was employed to investigate the initial response of
B. napus roots to drought stress (Mohammadi et al., 2012). Protein
expression profiles of drought-sensitive (RGS-003) and drought-
tolerant lines (SLM-003), and their F1 hybrid,were analyzed. In the
sensitive line, proteins related to metabolism, energy, disease/
defense, and transport were decreased under drought stress. In the
tolerant line, however, proteins involved in metabolism, disease/
defense, and transport were increased, while energy-related
proteins were decreased. The identified proteins with abundance
changes in these lines suggest that V-type H+-ATPase, plasma
membrane-associated cation-binding protein, heat shock protein
90, and elongation factor EF-2 have a role in the drought tolerance
of B. napus. Additionally, decreased levels of heat shock protein 70
and tubulin beta-2 in the drought-sensitive and hybrid F1 lines
might be involved in the reduced growth of these lines in drought
conditions (Mohammadi et al., 2012). In a recent proteomics
analysis using iTRAQ, proteins responsive to short-term drought
stress and salt stress were identified in leaves from15-d-oldB. napus
seedlings. Within the proteome profile of 5583 proteins, 205
proteins showed expression level changes in response to 4 hof PEG-
simulated drought treatment, with 45 common to salt-responsive
proteins and 160 specific to the drought stress (Luo et al., 2015a).
Functional classification of the drought-responsive proteins sug-
gested that ion transport, vesicle trafficking, and signal perception/
transduction (e.g. G-protein related signaling and phosphorylation
events) play a role in early drought response in B. napus seedlings.
Additionally, notable drought-associated changes in proteins
involved in transcription, translation, metabolism, and photosyn-
thesis were observed, suggesting drought-regulation of these
processes (Luo et al., 2015a). In another study, the proteome
response of B. napus leaves was studied using iTRAQ over a
prolonged time-course of drought (Koh et al., 2015). Respectively,

136, 244, 286, and 213 proteins were significantly altered on the
3rd, 7th, 10th, and 14th days of drought. Drought-induced proteins
in B. napus leaves were involved in energy production, protein
synthesis, and stress and defense responses, whereas drought-
repressed proteins were associated with metabolism, signaling,
protein folding and degradation (Koh et al., 2015).

Proteomic studies have been conducted not only in B. napus
using drought-stressed whole plants or organs but also in cell types
with specialized roles in drought response. Guard cell protoplasts
with high purity can be prepared on a large scale from B. napus
leaves (Zhu et al., 2009). A total of 431 nonredundant proteins
were identified and quantified from untreated and ABA-treated
B. napus guard cell protoplasts in a comparative proteomics study
using iTRAQ (Zhu et al., 2010). ABA up-regulated 66 proteins in
B. napus guard cells, the majority of which were involved in
photosynthesis, stress/defense responses, andmetabolism. Proteins
involved in photosynthesis and stress/defense responses were also
observed to be drought-inducible in B. napus leaves (Koh et al.,
2015). ABA suppressed 38 proteins in B. napus guard cells,
particularly in the categories of metabolism, protein synthesis,
energy production, protein folding/transport and degradation, and
membrane transport (Zhu et al., 2010). The identified ABA-
responsive proteins in B. napus guard cell protoplasts not only
provide molecular details related to known physiological events in
the ABA signaling pathway, for example, ROS homeostasis and
cytoskeleton reorganization, but also reveal novel components in
ABA signal transduction. For example, it is noteworthy that the
Arabidopsis homolog of an ABA-induced protein, Bet v I allergen
family protein, was later identified to be the ABA receptor PYL2
(Melcher et al., 2009).

Proteomics approaches have been developed to identify not only
those proteins that change in abundance but also proteins with
changes in posttranslational modifications (PTMs), such as
phosphorylation, oxidation, and glycosylation (Mann & Jensen,
2003). Posttranslational modifications of proteins are another
important component of plant drought responses (Umezawa et al.,
2013). For example, the ABA signaling pathway is activated by
initial dephosphorylation/phosphorylation events (Hubbard et al.,
2010). Enhanced ROS production in different cellular compart-
ments is one of the invariant responses to drought stress (Cruz de
Carvalho, 2008), which could potentially change the cellular redox
status and result in protein oxidation/reduction (Mart�ınez-Acedo
et al., 2012). Zhu and colleagues recently reported 65 redox-
responsive proteins from B. napus guard cells treated with ABA.
Particularly, the in vitro activities of an SnRK2 and a 3-
isopropylmalate dehydrogenase were confirmed to be regulated
by oxidant and reductant treatment (Zhu et al., 2014). This study
revealed thiol-based redoxmodification of proteins as an important
regulatory mechanism in guard cell ABA signaling pathways (Zhu
et al., 2014). Using iTRAQ methodology, Koh and colleagues
observed dynamic changes of protein PTMs (oxidationmostly, and
phosphorylation) in B. napus leaves during drought stress (Koh
et al., 2015).

In a study by Meyer et al. (2012), over 400 phosphopeptides
were identified within B. napus seeds at the late maturation stage. A
large fraction (26.0%) of the late maturation unique
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phosphopeptides were from proteins annotated as LEA proteins,
which are known to play a role in dehydration tolerance
(Hundertmark & Hincha, 2008). Another fraction (4.2%) was
mapped to other desiccation-related proteins. Accordingly, this
work supports a relationship between drought stress and seed
desiccation and implicates a regulatory role of phosphorylation in
these physiological processes (Meyer et al., 2012).

The recent completion and publication of the B. napus genome
sequence and anticipated progress in improved gene annotation
will also provide anup-to-date database for the predictedproteome,
which will allow more accurate identification of proteins in large-
scale proteomics datasets generated from this species. Computa-
tional and experimentally derived proteomes can then be mined
toward elucidating complex networks of protein–protein interac-
tions. For example, protein interactions in B. rapa have been
inferred using known A. thaliana interactions and interspecies
homology and synteny (Yang et al., 2012). A number of other
methods are also available to infer interactions and regulatory
networks using interaction, protein domain, and expressionpattern
data from related species (Liu et al., 2005; Noor et al., 2013). Such
methods, along with availability of an expanded A. thaliana
protein–protein interaction network (Jones et al., 2014), hold
promise for inferring the protein interactome of B. napus.

3. Metabolomics

Metabolites are also key components and regulators of biolog-
ical processes. For example, stomatal closure is induced by
extracellular malate and fumarate at millimolar concentrations
in tomato (Ara�ujo et al., 2011). Metabolomics has emerged as a
high-throughput analytical method to identify pivotal metabo-
lites in biological processes. At present, information on global
profiling of metabolites in B. napus is lacking, as is also true for
most plant species. Two decades ago, however, evidence
suggested that accumulation of free amino acids, including
proline, alanine, and aspartate, is a direct effect of drought stress
in B. napus (Good & Zaplachinski, 1994). This might be the
earliest identification of key metabolites in B. napus drought
response. Under drought conditions, considerable changes in
chloroplast lipid metabolism were also observed in B. napus
leaves. Drought stress evoked a decline in leaf polar lipids,
mainly as a result of a decrease in monogalactosyldiacylglycerol
content (Benhassaine-Kesri et al., 2002). Furthermore, photo-
synthetic pigments were significantly reduced by drought stress,
including Chla, Chlb, and carotenoids in two B. napus varieties:
Rainbow, and Dunkeld (Ullah et al., 2012).

Phytohormones also participate in the regulation of drought
stress response. Induction of endogenous ABA synthesis is a
universal response to drought in vascular plants, including B. napus
(Qaderi et al., 2006;Wan et al., 2009). In addition, the application
of salicylic acid (10 lM) can ameliorate some of the adverse effects
of drought stress in B. napus. After salicylic acid treatment, the
relative water content, Chla and b, leaf carotenoids, soluble protein,
and seed oil contents recovered in drought-stressed plants to values
comparable to those in well-watered plants (Ullah et al., 2012).
Such observations reveal a role of plant hormone crosstalk in

drought stress tolerance in B. napus, as expected from observations
on other species.

Improvements in analytical mass spectrometry (MS) have been
crucial to the expansion of metabolomics. Not only the
mass : charge ratio but also fragmentation information can be
provided to aid in deciphering the structure of each metabolite
(Dettmer et al., 2007). The coupling of gas chromatography or
liquid chromatography with MS allows one to profile (i.e.
untargeted metabolomics) or selectively monitor (i.e. targeted
metabolomics) many hundreds of compounds within a single
injection (Patti et al., 2012). The ionome, defined as the quantified
mineral nutrients and trace elements in an organism, can be
thought of as the inorganic component of the metabolome (Salt
et al., 2008). It is worthwhile performing high-throughput
metabolomics/ionomics analysis in drought-stressed canola plants
to reveal metabolome/ionome profiles of canola species and
associated metabolic and nutrient networks in drought response
and tolerance.

Mathematical modeling that incorporates parameters from wet
laboratory measurements of metabolites and related enzymatic
equations is an emerging approach to quantify and predict
complicated metabolic processes at the systems level in plants
(Libourel & Shachar-Hill, 2008). Among the modeling
approaches, flux balance analysis (FBA) is a constraint-based
method aiming to determine themass balance byoptimizing a set of
flux values towards an objective function such as maximization of
growth (Grafahrend-Belau et al., 2009). FBA of cellular
metabolism in B. napus has been used to predict the pathways
involved in biomass accumulation under different physiological
conditions of light and nutrient availability (Hay & Schwender,
2011; Pilalis et al., 2011). A study in rice used FBA to model
metabolic changes under drought and flooding (Lakshmanan et al.,
2013) and the B. napus metabolic model could be adjusted
similarly to predict the pathways affected by drought in this species.

4. Phenomics

With advances in sequencing technologies, genomics approaches
have generated massive amounts of data on gene sequences and
transcriptome profiles in a great number of plant species, which
provide directions for crop improvement. However, genomics
alone cannot solve all the challenges in developing varieties with
desirable traits, as connections between genotype and phenotype,
including physiological, morphological, and phenological traits,
can be indirect and highly complex. Moreover, even with identical
genetic background, interaction with environmental factors results
in diversity in phenotypic traits due to gene–environment inter-
actions and the inherent plasticity of plants. Additionally, the plant
phenome is itself multidimensional with numerous components,
including but not limited to leaf morphology, root architecture,
growth parameters, biomass, photosynthetic rate, and other
physiological traits related to yield and biotic/abiotic stress
responses (Furbank & Tester, 2011). Screening for favorable
agronomic traits together with further understanding their under-
lying genetic basis may be the most promising and efficient avenue
to determine gene or QTL candidates for crop improvement.
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Phenotyping was manual, time-consuming, and destructive
before the emergence of phenomics. Phenomics aims to use
automated and reliable platforms for phenotyping in a high-
throughput manner and provide traceable and reproducible data.
However, owing to the complexity of the phenome, phenomics is
currently limited by the availability of methods to measure certain
traits. Therefore, advances in phenomics have not yet achieved the
capabilities available with genomics techniques. In cereals, infrared
thermography has been utilized to quantify responses in different
genotypes under drought stress (Munns et al., 2010), but this has
yet to be applied to canola species. In canola species, an economic
and high-resolution scanner system was developed to quantify root
architectural traits in B. rapa (Adu et al., 2014). Root phenomics
was also reported in B. napus with phosphate limitation and the
associated genetic loci were identified (Shi et al., 2013). Similarly to
Shi et al. (2013), phenomics in traits that are related to drought
response/tolerance, for example, root elongation and biomass
accumulation, could be performed in canola, and QTLs could be
identified. Outcomes from such studies, together with genetic
understanding, will facilitate marker-assisted selection for
enhanced drought tolerance in canola.

The application of -omics and system biology approaches have
already provided, and will continue to provide, in-depth knowl-
edge of B. napus drought responses. Evidence for regulation of
transcription, signaling pathways, protein synthesis, and
metabolism, together with other processes, indicate the complexity
of drought responses in B. napus and, presumably, most plant
species. The acquired information provides potential targets for
effective genetic engineering strategies towards improved stress
tolerance.

V. Natural variation indrought tolerance for informing
breeding

Although B. napus is a globally important oilseed crop, from a
breeding perspective it has received relatively little attention with
regard to drought responses. Drought responses as well as their

underlying genetic control represent a particularly complex
combination of different phenotypes. As a result, breeding
strategies to date have relied largely on direct phenotypic selection
for yield. There is an extensive history of using traditional mapping
populations to identify QTLs for agronomic and nutritional traits
inBrassica. Natural variation inWUE among Brassica lines has also
beenwell documented (Richards, 1978;Good&Maclagan, 1993).
However, despite this, improvements in drought tolerance have
been limited (Cowling, 2007).

Incorporatingmore physiological and phenomics data in studies
of drought responses may prove useful for capitalizing on the
available natural variation for production of B. napus cultivars with
improved drought tolerance. Screens of targeted aspects of drought
response physiology can lead to selection of lines with altered
sensitivity to drought. For example, lines exhibiting natural
variation in leaf ABA sensitivity affecting stomatal water loss
(Fig. 4a) may also have differences in regulation of ABA concen-
trations, such as catabolite content, as seen in the field (Fig. 4b).
Plant types representing such stomatal dynamics vary in their
response to drought conditions (Fig. 4c). Here, reduced ABA
sensitivity in guard cells is correlated with decreased leaf water
content under drought in the field.

In addition to physiological traits, morphological traits respond
to drought stress (Fig. 2). For example, the role of root system
architecture in water uptake makes it another candidate for
selection. Root systems of canola crops are less dense than those of
more drought-tolerant species such as wheat, and they remove less
water from the soil (Cutforth et al., 2013). Positive correlations
between drought tolerance and increased size and depth of root
systems have been found in B. napus (Hatzig et al., 2015) and
several other crop species (Cortes & Sinclair, 1986; White &
Castillo, 1989; Price et al., 2001; Kirkegaard&Lilley, 2007; Lopes
& Reynolds, 2010). Semiautomated systems and software have
been developed to characterize root architecture, which can aid in
rapid phenotyping of large collections as needed for breeding
(Farhidzadeh et al., 2012; Galkovskyi et al., 2012; Lobet &Draye,
2013; Bucksch et al., 2014; Rell�an-�Alvarez et al., 2015). However,

(a) (b) (c)

Fig. 4 Natural variation in abscisic acid (ABA)-relatedphenotypes inB.napusplants grownunder laboratory andfield conditions. (a) ABA sensitivity of stomatal
aperture of chamber-grown plants. (b) ABA metabolism in field-grown plants. (c) Drought sensitivity of field-grown lines with different stomatal-regulation
types as shown in (a). Data in (a–c) are presented as means� standard errors.
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the adaptive value of large or deep root systems depends on soil and
climatic conditions, so breeding strategies need to be adjusted to
match the targeted production region (Araus et al., 2002; Cativelli
et al., 2008).

For dealing with drought stress, thus far the most common
strategy in crop breeding has been to breed for drought escape,
wherein plants have been selected for completing their life cycle
quickly, before encountering harsh drought stress. Accordingly,
current breeding practices have selected for short flowering times in
B. napus (Rahman, 2013). As B. napus is most sensitive to drought
during the transition from flowering to pod development (Cham-
polivier&Merrien, 1996), this strategy is beneficial in situations of
terminal drought. However, amid a changing climate and as
agricultural production moves into more marginal areas and
limited irrigation regimes, this strategy may prove insufficient. An
alternative strategy to drought escape is dehydration avoidance, the
ability to maintain internal water status upon drought stress by
reducing water loss and/or enhancing water uptake. In contrast to
the drought escape strategy, B. napus and B. rapa accessions with
longer flowering times can have increased WUE and larger root
systems for increased water uptake (Mitchell-Olds, 1996; Franks,
2011; Fletcher et al., 2015). Because of the apparent tradeoff that
exists between drought escape and dehydration avoidance, breed-
ing for drought escape alone may have reduced the potential for
drought tolerance among current varieties. This tradeoff has also
been observed in glasshouse studies on A. thaliana accessions
collected worldwide (McKay et al., 2003; Kenney et al., 2014),
suggesting a widespread phenomenon. Some studies, however,
have found that the negative relationship between flowering time
and WUE is not invariant and there are genotypes of A. thaliana
with both high WUE and short flowering time (Wolfe & Tonsor,
2014; Kooyers, 2015). Such genotypes with high WUE and short
flowering times may exist in Brassica as well and could be suitable
candidates for simultaneously breeding both drought tolerance
strategies. Especially given the earlier mentioned tradeoff, the
specific aspects of drought tolerance best suited for improvement
depend on the target environment, including local details of
climatic and soil moisture conditions along with irrigation
practices. As the global climate warms, the co-occurrence of heat
stress together with drought will further complicate this effort; for
example, evaporative cooling by means of increased stomatal
conductance helps to alleviate heat stress, but exacerbates drought
stress.

As with many plant species, single nucleotide polymorphism
(SNP) discovery in Brassica based on next-generation sequencing
has improved the prospects for identifying natural variants of
interest. Recent GWAS have identified B. napus variants associated
with desirable agronomic traits such as seed yield and harvest index
(seed biomass/vegetative biomass) (Cai et al., 2014; Li et al., 2014;
Luo et al., 2015b). These analyses have yet to be extended to
drought studies under field conditions.However, a recent report by
Yong et al. (2015) used GWAS to identify a gene controlling
variation in salt tolerance in B. napus. This study stands as a model
for the power of combing A. thaliana biology, Brassica -omics data,
and natural variation toward crop improvement. Here the authors
measured salt tolerance in 85 diverse inbred genotypes of B. napus

under salinity stress. Then, using the version 4 B. napus genome
pseudomolecules (Harper et al., 2012) as a guide, they identified a
set of 24 834SNPmarkers in this population.A subsequentGWAS
for salt tolerance revealed several QTLs. Finally, they chose
candidate genes under those QTLs based on gene ontology of
A. thaliana orthologs, and upon sequencing those genes in the
B. napus genotypes, they identified polymorphisms in a TSN1
(RNA-binding protein Tudor-SN) ortholog as highly explanatory
of variation in salt tolerance of B. napus. TSN1 is therefore a
promising target for transgenic or traditional breeding for
improved salt tolerance in B. napus. These results demonstrate
the efficacy of exploring natural variation, in concert with the use of
-omics and A. thaliana tools toward improving abiotic stress
tolerance in Brassica crops (Fig. 1).

Genetic diversity is necessary for successful breeding of desirable
traits. A number of groups have measured genetic diversity in
B. napus (Batley et al., 2003; Delourme et al., 2013) and the C
genome appears to have lower genetic diversity than the A genome
(Wu et al., 2014). There also appears to have been a loss of overall
genetic diversity within at least some breeding pools, such as those
in Australia (Cowling, 2007) and Canada (Fu & Gugel, 2010).
Furthermore, the genetic diversity available for selective breeding
within B. napus does not fully represent that of its parental species
(Becker et al., 1995; Seyis et al., 2003). Therefore, in addition to the
diversity within B. napus, the larger phenotypic diversity of other
Brassica species could also be a source of favorable drought-related
phenotypes, such as increased osmotic adjustment (Gunasekera
et al., 2009). Accordingly, there have been attempts to increase
genetic diversity by resynthesizing B. napus from B. rapa and
B. oleracea (Bennett et al., 2012; Wu et al., 2014). Additionally,
there has been increased interest in introgressing loci controlling
phenotypic variation using hybrid bridges and the generation of
new type B. napus, wherein the entire A or C genome is replaced by
a wild B. rapa or B. oleracea genome (Qian et al., 2006; Chen et al.,
2011; Mei et al., 2011). Indeed, Mei et al. (2015) demonstrated
that the hybrid bridge approach successfully transferred a pathogen
resistance QTL from wild B. oleracea into B. napus. This may be a
powerful approach if applied to introgressing drought tolerance
traits into canola crops by tapping into the vast diversity in drought
responses of different wild and cultivated Brassica species (Richards
& Thurling, 1978a,b; Kumar & Singh, 1998; Enjalbert et al.,
2013). Therefore, it appears that, together, the diversity of the
B. napus gene pool and those of close relatives provide a promising
resource for future selective breeding toward favorable drought
tolerance traits in canola crops. The challenge will be to select for
domestication traits and adaptation to agronomic management,
without imposing the strong bottleneck that occurred in the
original breeding of B. napus. Emerging methods in field-based
phenomics (Andrade-Sanchez et al., 2013) might allow breeding
programs to work with much larger populations, andminimize the
effect of drift and fixation of deleterious mutations.

VI. Conclusions/hurdles/perspectives

The availability of the B. napus genome has opened the door to
computational as well as reverse genetic approaches that can inform

New Phytologist (2016) 210: 1169–1189 � 2016 The Authors

New Phytologist� 2016 New Phytologist Trustwww.newphytologist.com

Review Tansley review
New
Phytologist1182



strategies to improve drought tolerance, such as analysis of
promoter motifs of drought-regulated genes, studies documenting
effects of copy number variation on drought tolerance, and target
prediction for stress-regulated microRNAs (Xie et al., 2007). Such
studies were not possible with the limited genomic resources
previously available in this species. The more complete picture of
gene models in B. napus also provides an opportunity for cross-
species inference of drought-regulated protein interactomes (Yang
et al., 2012). Knowledge of the mechanisms of drought response
and resistance and their participating genes in other well-studied
model species such asA. thaliana or crop species such as rice, maize,
wheat and soybean can be used to infer parallel mechanisms in
canola crops, especially when orthologous gene models are present
in the canola species. Conversely, as the availability and quality of
genome sequences and gene models of canola species improve,
identification and subsequent manipulation of potential canola-
specific genes and stress tolerance mechanisms can be accelerated.

In parallel with the genomics breakthrough in canola crops,
linking phenome and genome has become urgent and indispens-
able to discover genes and traits contributing to canola drought
tolerance. Genes related to drought tolerance in canola have been
discussed earlier. Favorable traits for enhanced drought tolerance
include but are not limited to: traits to enhance the plant’s ability to
obtain water, such as rooting depth, root architecture, water
extraction capability, and ability to withstand deleterious
(pathogenic) aspects, and capitalize on favorable aspects, of the
microbiome; traits for improved water conservation under drought
conditions, including osmoprotectant accumulation and opti-
mized control of guard cell density, drought/ABA sensitivity and
stomatal response kinetics; and traits that allowoptimal plasticity in
flowering time in response to varying water availability (Mullet,
2009; Ashraf, 2010).

Progress in phenomics and genomics, together with outcomes
from other systems biology studies, as well as knowledge gained
from other species, will deepen understanding of the mechanisms
involved in drought response, adaptation, and tolerance, forming
the basis and direction for canola improvement through traditional
breeding or genetic engineering. Nowadays, genomemanipulation
is not limited to overexpressing a gene or repressing a gene through
RNA interference technology (Table 1). Epigenetic modifications
and the CRISPR/Cas9 system for targeted genome editing can also
be applied in genetic engineering of canola crops (Belhaj et al.,
2015). Because B. napus is allopolyploid, homeologs within
B. napus (homologs from B. rapa and B. oleracea) can share high
sequence identity. CRISPR/Cas9 genome editing has been
successfully applied to target two loci simultaneously in the
Arabidopsis genome (Mao et al., 2013). Therefore, this system has
great potential for editing multiple homeologs in the B. napus
genome. Additionally, doubled haploid (DH) lines as potential
canola varieties have been developed to reduce genetic complexity
and shorten breeding time for this crop (Ku�cera et al., 2002). In
combination with the earier-mentioned genetic modification
strategies, obtaining DH lines (varieties) with enhanced drought
tolerance can be accelerated.

It has been argued that, particularly for the phenomenon of
drought tolerance, the number of successful examples wherein

translation of knowledge from laboratory studies (primarily on
A. thaliana) has resulted in adoption of a new transgenic crop
cultivar, relative to the total number of studies on drought tolerance
in, for example, A. thaliana, is disproportionately small (Passioura,
2007; Blum, 2014). Reasons that have been proffered for the low
success rate include the complex, polygenic nature of plant water
relations, imposition of unrealistic drought scenarios inA. thaliana
growth chamber and glasshouse experiments, and the need to
identify transgenes that will result in optimal plant performance in
nonstressed as well as stressed field conditions, that is, the need to
avoid yield drag (Blum, 2014 and reference therein). While these
arguments have validity, it should also be noted that when the crop
to be manipulated is more closely related to A. thaliana, as is the
case for B. napus, the success rate is likely to be proportionately
much higher. In addition, the value of the model plant A. thaliana
as a reference genome cannot be overstated, as perfectly exemplified
by its use in the initial annotation of the B. napus genome
(Chalhoub et al., 2014).

Nevertheless, drought adaptation is highly polygenic and new
large-scale approaches that can be conducted directly in the crop
species of interest, including both -omics analyses and large-scale
genetic studies of natural variation and genome-wide association,
signal a new era in drought research, with great potential for
implementation via targeted molecular breeding. As illustrated in
this review, current development of -omics and genetic tools and
datasets for B. napus is allowing its development as a model crop
species in its own right. This knowledge is enabling direct
(intraspecies) approaches to improve drought tolerance in
B. napus, as will become increasingly necessary for all major crop
species if we are to successfully combat the vagaries of climate
change and provide food, fuel, and shelter for over nine billion
people by 2050.
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